i1 : R = ZZ/101[x,y,z]; |
i2 : f = random(R^1,R^{5:-3}) |
Normally matrices such as the one above are displayed in compact notation that originated with Macaulay. Setting the global flag compactMatrixForm to false will modify that behavior.
i3 : compactMatrixForm = false |
i4 : f |
i5 : C = resolution cokernel f |
i6 : be = betti C |
i7 : "Betti numbers of " | net C | " are " | be^2 |
i8 : "x" | "2"^1 |
i9 : Divide(Minus a,b) |
i10 : Power(Sum(3,4,5),7) |
i11 : Sum(1,2, Minus 3, 4,5) |
i12 : Minus a / b |
i13 : (Sum(3,4,5))^7 |
i14 : 1 + 2 + Minus 3 + 4 + 5 |
The function expression can be used to prepare things such as polynomials for formatting using the mechanism introduced above.
i15 : g = (x+y)^2 |
i16 : e = expression g |
i17 : peek e |
i18 : peek2(e,2) |
i19 : Table{{1,2,3},{a,bb,ccc}} |
i20 : MatrixExpression{{1,2,3},{a,bb,ccc}} |
i21 : Table{{"Example 1","Example 2"}, |