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Homework 8

The homeworks are due on the Thursday of the week after the assignment was posted
online1. Please hand in your homework at the beginning of the tutorial or bring it to the
lecture on Thursday morning. You can work on and submit your homework in groups of
two. Please staple your pages and write your names and matriculation numbers on the first
page.

Problem 22 (10 pts.)

Let p be a prime number. Let Qp be the algebraic closure of Qp , i.e., the (up to isomorphism)
unique algebraic extension K of Qp that is algebraically closed. We can construct Qp as the
splitting field of all polynomials in Qp [X ] or, equivalently, the union of all finite extensions
of Qp (and then show that this is an algebraically closed field). We know that the algebraic
closure of R is C and thus R has degree 2 over R.
Show that, however, the extension Qp/Qp is infinite.
Hint 1: Show that, for every n ∈ N, there is an irreducible polynomial f ∈ Qp [X ] of degree
n. For this you may use, for example, the reduction criterion for polynomials over a unique
factorization domain and Hint 2.
Hint 2: Use the following fact from Algebra. For all n ∈ N there is a finite field Fpn with
pn elements. The extension Fpn/Fp is a Galois extension of degree n.

Solution. The idea is to show that there are irreducible polynomials of arbitrarily large
degrees over Qp . Since the root of an irreducible polynomial of degree n generates an
extension of degree n, Qp will contain extensions of arbitrarily large degree n, and so it
cannot be a finite extension.
We will use next Hint 2, which is a result from finite fields saying that, for every n ≥ 1, the
finite field Fp has a unique extension of degree n, which is the field Fpn with pn elements.
The extension Fpn/Fp is Galois, in particular separable, hence there exists a polynomial
f (X ) such that Fpn is obtained by adjoining a root of f (X ) to Fp . In fact, this says that, for
every n ≥ 1, there is an irreducible polynomial of degree n in Fp [X ] whose roots generate
the unique extension Fpn . We finally use the following irreducibility criterion:
Let f (X ) ∈ Zp [X ] be a monic polynomial whose reduction modulo p is irreducible in Fp [X ].
Then f (X ) is irreducible over Qp .
Choosing now any lift of the irreducible polynomial f (X ) to a monic polynomial in Zp [X ]
gives an irreducible polynomial of degree n in Qp [X ], as desired.

Problem 23 (10 pts.)

Let K/Qp be a finite extension, | | the unique extension of the p-adic absolute value to
K . Let OK ⊂ K be the valuation ring. Show that OK consists exactly of those elements
x ∈ K that are roots of a monic polynomial with coefficients in Zp (i.e., OK is the “ring of
integers” in K ).

1This assignment is due Thursday, 05.12.19.
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Solution. If [K : Qp ] = n and α ∈ OK , then |α| = n

√
|NK/Qp

(α)|p ≤ 1. But since the norm

equals (−1)r deg f ar
0 , where a0 is the constant term of the minimal polynomial f of α and

r = [K : Qp(α)], this means that |a0|p ≤ 1 and so a0 ∈ Zp . It then follows, by a corollary
from Hensel seen in class (Kor. 2.1), that f has coefficients in Zp . Conversely, consider any
x whose minimal polynomial f (X ) = X n + · · ·+ a1X + a0 has coefficients in Zp . Then

|x |np = |an−1xn−1 + · · ·+ a1x + a0|p ≤ max
1≤i≤n−1

|aix i |p ≤ max
1≤i≤n−1

|x |ip (since |ai |p ≤ 1),

which implies |x |p ≤ 1. Alternatively one can use Lemma 2.2 from the Script.

Problem 24 (10 pts.)

Let e = e(K/Qp) be the ramification index as defined in Exercise 26. If we write f =
f (K/Qp) = n/e and if k = O/p denotes the residue field, then [k : Fp ] = f , so that
k = Fpf is the finite field with pf elements. You don’t need to prove this! Instead, just try
to exemplify this result by computing e, f and n for the following two fields:

(i) p = 5, K = Q5(
√

2).

(ii) p = 5, K = Q5(
√

5).

(iii) p = 5,K = Q5(
√

11).

(iv) Bonus (5 pts.): p = 3, K = Q3(ζ,
√

2), where ζ is a primitive third root of unity,
i.e., ζ3 = 1 but ζ 6= 1.

Solution. (i) We have seen in Exercise 26 that e = 1 and that n = 2. Therefore, we need to
show that f = 2. We can compute O either directly, or by invoking the result from Problem
23. In either case, the answer is O = Z5[

√
2]. We have O = {x ∈ K : |x |5 ≤ 1}. But if

x = a +b
√

2 with a, b ∈ K , then |x |5 =
√
|NK/Q5

(x )|5 =
√
|a2 − 2b2|5, and |x |5 ≤ 1 implies

|a2|5, |b2|5 ≤ 1, from where it follows indeed that O = Z5[
√

2]. To compute the maximal
ideal p we need |x |5 < 1, hence p = 5Z5[

√
2] and k = F5[

√
2], thus f = [k : F5] = 2. (ii) It

is clear that 5 itself is not a square in Q5 and that K = Q5(
√

5) is an extension of degree 2
with {1,

√
5} a basis. Hence e ∈ {1, 2}. If x =

√
5, we have ν5(x ) = 1

2 , hence we must have
e = 2 and we need to prove that f = 1, for which we need to show that k = F5. Just like
before, we have O = Z5[

√
5]. To compute p, we need |x |5 =

√
|a2 − 5b2|5 < 1, which holds

iff a ∈ 5Z5 and b ∈ Z5 and which gives p = (
√

5) = 5Z5⊕
√

5Z5 and k = F5 indeed. (iii) The
trick here is that 11 ≡ 1 (mod 5) and

(
1
5

)
= 1, therefore 11 is a square in Q5 and K = Q5,

so there is nothing to do here: e = f = n = 1. (iv) K is an extension of degree 4 over Qp ,
hence n = 4 (both Q3(ζ) and Q3(

√
2) are subextensions of degree 2). Thus e ∈ {1, 2, 4}.

We claim that e = 2. It is not hard to see, on recalling that 1 + ζ + ζ2 = 0, that x = 1− ζ
is a uniformizer in K . Let’s compute its norm. Since [K : Q3(ζ)] = 2, we have

NK/Q3
(1− ζ) = NQ3(ζ)/Q3

(NK/Q3(ζ)(1− ζ))

= NQ3(ζ)/Q3
(1− ζ)2.

To compute this last norm, regard Q3(ζ) as a 2-dimensional vector space over Q3 with

basis {1, ζ}. The matrix of multiplication by 1 − ζ is

(
1 1
−1 2

)
and so the norm, which is

just the determinant of this matrix, is equal to 3, which gives ν3(x ) = 1
4ν3(9) = 1

2 , from
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where we conclude that e = 2. Finally, we need to show that f = 2. It is not hard to
see that O = Z3[ζ,

√
2] and we know that p = (1 − ζ), from where we infer that k =

Z3[ζ,
√

2]/(1− ζ) = F3[
√

2], thus f = [k : F3] = 2.

The following exercises will be discussed in the tutorial and you do not need to hand in
solutions for them.

Exercise 25

Let p = 5. Check that 2 is not a square in Q5 and consider the quadratic extension K =
Q5(
√

2). View K as a 2-dimensional Q5-vector space and give an example of a (vector space)
norm on K that is not a valuation on K but does extend the p-adic absolute value on Q5.

Solution. This should be clear by now, as quadratic residues mod 5 are only 0, 1, 4. An
example of such a norm is given by ‖a + b

√
2‖ =

√
|a|25 + |b|25. This gives the 5-adic norm

| |5 when b = 0, i.e., when restricted to Q5, but is not a valuation on K . This is so because
the multiplicativity property of a valuation is not satisfied:

‖a + b
√

2‖‖c + d
√

2‖ =
√
|ac + 2bd |25 + |ad + bc|25, (1)

while √
|a|25 + |b|25

√
|c|25 + |d |25 =

√
(|a|25 + |b|25)(|c|25 + |d |25). (2)

But by the strong triangle inequality, |ac + 2bd |25 ≤ max{|ac|25, |bd |25} (the factor 2 does not
contribute to the 5-adic valuation), while |ad + bc|25 ≤ max{|ad |25, |bc|25}. In any case, the
expression from (1) will be strictly smaller than that from (2) for a, b, c, d 6= 0.

Exercise 26

Let K/Qp be a finite extension of degree n. Let v be the unique extension of the p-adic
valuation vp to K .

(a) Show that there is a positive integer e ≥ 1, such that e | n and

v(K×) =
1

e
Z.

This integer is called the ramification index of K/Qp .

(b) Let K = Q5(
√

2), which is a quadratic extension of Q5. Find the ramification index
e = e(K/Q5) in this example.

Solution. (a) Recall that ν(x ) = 1
n νp(NK/Qp

(x )). This implies that ν(K×) ⊂ 1
nZ. By

the property that ν(xy) = ν(x ) + ν(y), we conclude that ν(K×) is an additive subgroup
of 1

nZ. Now let d/e be in the image ν(K×), with (d , e) = 1, chosen such that e is the
largest denominator that occurs. This is possible since it is clear that e | n, so that the
range of possible denominators is bounded. As (d , e) = 1, one finds integers r , s such that
rd − se = 1, thus

r
d

e
=

1 + se

e
=

1

e
+ s

is in the image. Since s ∈ Z is in the image, it follows that 1/e is also in the image. But then
it follows that the image must be exactly 1

eZ, as e was chosen to be the largest possible
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denominator.
(b) This can be done in the simplest way: we know that νp(x ) = 1

2νp(NK/Qp
(x )) for any

x ∈ Q5(
√

2). But any such x is of the form x = a + b
√

2, with a, b ∈ Q5. Then we compute
NK/Qp

(x ) = (a + b
√

2)(a − b
√

2) = a2 − 2b2, and we notice that the valuation of 5 in
a2 − 2b2 must be even. If ν5(a

2) 6= ν5(b
2), this is clear as (2, 5) = 1 and so ν5(a

2 − 2b2) =
min{ν5(a2), ν5(b

2)}, which is an even number. Otherwise, as long as a2 and 2b2 do not
start with the same 5-adic digit, the result still holds. But this cannot happen as 2 is not
a quadratic residue mod 5. This implies that the image of νp(x ) is always in Z, hence
e = 1.
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