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Homework 4

The homeworks are due on the Thursday of the week after the assignment was posted
online1. Please hand in your homework at the beginning of the tutorial or bring it to the
lecture on Thursday morning. You can work on and submit your homework in groups of
two. Please staple your pages and write your names and matriculation numbers on the first
page.

Problem 10 (10 pts.)

(i) Show that in Hensel’s Lemma (as formulated in Corollary 1.2 in the script) one can
weaken the condition F ′(α1) 6≡ 0 by replacing it with the condition

|F (α1)|p < |F ′(α1)|2p .

(ii) Show that there exists a unique α ∈ Zp with F (α) = 0 and

|α− α1|p < |F ′(α1)|p .

(iii) Show that this version of Hensel’s Lemma is more general than Corollary 1.2, in the
sense that this version implies Corollary 1.2.

(iv) Find an example where this version can be used, but Corollary 1.2 cannot.

Solution. (i) The idea is to construct a Cauchy sequence (αn)n≥1 satisfying F (αn) ≡
0 (mod pn) and αn ≡ αn+1 (mod pn).
We use the p-adic Newton method and define

αn+1 = αn −
F (αn)

F ′(αn)
.

Let C :=
∣∣∣ F (α1)
F ′(α1)

∣∣∣
p
< 1. By induction it is easy to show that the sequence (αn) satisfies

1. |αn |p ≤ 1 for all n,

2. |F ′(αn)| = |F ′(α1)|p ,

3. |F (αn)|p ≤ |F ′(α1)|2pC 2n−1
.

Hint: use the following two identities. If f ∈ Zp [X ] and x , y ∈ Zp , then there is a z ∈ Zp

with
f (x + y) = f (x ) + f ′(x )y + zy2

1This assignment is due Thursday, 07.11.19.
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(just write f (X + Y ) = f (X ) + f ′(X )Y + g(X ,Y )Y 2 for some g ∈ Zp [X ,Y ]) and also,

f (x )− f (y) = (x − y)G(X ,Y )

for another poynomial G(X ,Y ) ∈ Zp [X ,Y ]. Thus, |f (x )− f (y)|p ≤ |x − y |p .
Showing that the sequence is Cauchy is easy:

|αn+1 − αn |p =

∣∣∣∣ F (αn)

F ′(αn)

∣∣∣∣
p

≤ |F ′(α1)|pC 2n−1

and thus |αn+1 − αn |p converges to 0.
The limit α = limn→∞ ∈ Zp satisfies F (α) = 0 and |F ′(α)|p = |F ′(α1)|p .
(ii) We have in fact

|αn − α1|p =

∣∣∣∣ F (α1)

F ′(α1)

∣∣∣∣
p

< |F ′(α1)|p

for all n. This is clear for n = 2 and for n > 2 it follows by induction. Taking the limit
proves the claim.
(iii) Suppose β ∈ Zp with F (β) = 0 and |β − α1|p < |F ′(α1)|p . Thus, |β − α|p < |F ′(α1)|p
(all points in the ball are a center) and hence, if we write β − α = x , then

0 = F (β) = F (α+ x ) = F (α) + F ′(α)x + zx 2 = F ′(α)x + zx 2

for some z ∈ Zp as above. Suppose that x 6= 0 and hence β 6= α. Then

F ′(α) = −zx

which yields the contradiction

|F ′(α)|p ≤ |x |p < |β − α|p < |F ′(α)|p .

Thus, β = α is the only root of F in the open ball of radius |F ′(α1)|p around α1.
(iv) Take, e.g., the polynomial F (X ) = X 2 − 17 from Exercise 15.

Problem 11 (10 pts.)

Prove that, for any prime p and any positive integer m not divisible by p, there exists a
primitive m-th root of unity in Qp if and only if m divides p − 1.
Bonus (5 pts.): Let p 6= 2 be a prime number. Show that there are no primitive roots of
unity of order pn in Qp for any n ≥ 1. That is, the roots of unity in Qp are exactly the
(p − 1)-st roots of unity.
Bonus (5 pts.): What about p = 2?

Solution. “⇐” First suppose m | p − 1. The polynomial f (X ) = Xm − 1 has m distinct
roots modulo p because (Z/pZ)∗ is a cyclic group of order p − 1, and each of these roots
lifts to Zp by Hensel’s Lemma. Among these roots, precisely ϕ(m) have order m. “⇒” For
the converse, notice that if α ∈ Qp has order m, then, since f is monic, it must be in fact
that α ∈ Zp and (by Hensel) α is (congruent to) an element of order m modulo p, therefore
m | p − 1.
As for the bonus parts, we will show the only pth root of unity in Z×p is 1 for odd p and

the only 4th roots of unity in Z×2 are ±1. This implies the only pth power roots of unity in
Z×p are 1 for odd p and ±1 for p = 2 (since otherwise there would be pth roots of unity in
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Qp , but we are going to show there aren’t any).
Note that if xn = 1 in Qp , then |xn |p = 1, which means x ∈ Z×p . For p 6= 2 suppose that
ζp = 1 in Z×p . Since ζp ≡ ζ (mod pZp), we have ζ ≡ 1 (mod pZp). For the polynomial
f (X ) = X p − 1 we have |f ′(ζ)|p = |pζp−1|p = 1/p and the uniqueness in Hensel’s Lemma
implies that the ball

{x ∈ Qp : |x − ζ|p < |f ′(ζ)|p} = {x ∈ Qp : |x − ζ|p ≤ 1/p2} = ζ + p2Zp

contains no pth root of unity except for ζ. We will now show that ζ ≡ 1 (mod p2Zp), so 1
is in that ball and thus ζ = 1. Write then ζ = 1 + py , with y ∈ Zp , so that

1 = ζp = (1 + py)p = 1 + p2y +

p−1∑
k=2

(
p

k

)
(py)k + (py)p .

For 2 ≤ k ≤ p − 1, the binomial coefficient
(
p
k

)
is divisible by p, so all terms in the sum

over 2 ≤ k ≤ p − 1 are divisible by p3, and the (py)p is also divisible by p3 (since p ≥ 3).
Therefore, reduction modulo 3 yields 1 ≡ 1 + p2y (mod p3), hence y ≡ 0 (mod p) and
ζ ≡ 1 (mod p2), which forces ζ = 1.
Finally, if ±1 6= ζ ∈ Z×2 is a 4th root of unity, then ζ2 = −1, so ζ2 ≡ −1 (mod 4Z2). However,
ζ ∈ Z×2 =⇒ ζ ≡ 1 or 3 (mod 4Z2) =⇒ ζ2 ≡ 1 (mod 4Z2), and 1 6≡ −1 (mod 4Z2).

Problem 12 (10 pts.)

(i) Let p 6= 2 be a prime. Prove that the quotient group G = Q×p /(Q×p )2 has order 4. Prove
further that if a ∈ Z×p is any element whose reduction modulo p is not a quadratic
residue, then the set {1, a, p, ap} is a complete set of coset representatives for G .
Hint: Prove that an element x ∈ Qp is a square if and only if it can be written as
x = p2ny2 with n ∈ Z and y ∈ Z×p .

(ii) Show that if b ∈ Z2 and b ≡ 1 (mod 8Z2) (so that in particular b is a 2-adic unit),
then b is a square in Z2. Conversely, show that any 2-adic unit which is a square is
congruent to 1 modulo 8. Conclude that the group Q×2 /(Q

×
2 )2 has order 8, and that it is

generated by the classes of −1, 5 and 2 (so that a complete set of coset representatives
is given by {1,−1, 5,−5, 2,−2, 10,−10}).

(iii) Bonus (5 pts): Let p 6= 3 be a prime and let b ∈ Z×p be a p-adic unit. If there exists
c ∈ Zp such that b ≡ c3 (mod p), prove that b is a cube in Zp . Prove, further, that a
3-adic unit b is a cube in Z3 if and only if b ≡ ±1 (mod 9).

Solution. (i) This basically follows from the hint. (ii) The first assertion is yet another
application of the stronger Hensel’s Lemma. For the second, write a 2-adic unit in the form
1 + 2x , square it, (1 + 2x )2 = 1 + 4x (x + 1), etc. To prove the final claim, one can argue in
a similar way to part (i). Taking quotients in Q×2 , any representative is of the form 1, 2, y
or 2y for y ∈ Z×2 a 2-adic unit. Now, we know that y is a square iff y ≡ 1 (mod 8), so
there are 3 choices for a non-square y in Q×2 /(Q

×
2 )2, namely −5, 5 and −1. The conclusion

now follows easily. (iii) Apply the stronger Hensel to X 3 − b. As for the second claim,
there is an e ∈ {0,±1} such that b ≡ ±(1 + 3e)3 (mod 27). Now apply stronger Hensel to
f (X ) = X 3 − b with a0 = ±(1 + 3e).
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The following exercises will be discussed in the tutorial and you do not need to hand in
solutions for them.

Exercise 13

Is it true that a polynomial f ∈ Z[X ] is irreducible in Q[X ] if and only if it is irreducible in
Qp [X ] for every p ≤ ∞? What happens if we replace irreducible by reducible?

Solution. The “if” part is true, because if a polynomial is reducible over Q, it certainly
is reducible over every Qp . The “only if” part is not; for instance, take X 2 − 6, which is
reducible over Q5, or X 2 + 1, which is reducible over Q2, as X 2 + 1 = (X + 1)2 modulo 2.
In general, X 4 + 1 is a polynomial that is irreducible over Q, but reducible over every Qp .
This can be seen with a bit of number theory. We know that(

−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4),

and (
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ 1 or 7 (mod 8),

−1 if p ≡ 3 or 5 (mod 8).

If 2 is a square mod p, that is, p ≡ ±1 (mod 8), there exists a such that a2 = 2 (mod p),
and we write X 4 + 1 = (X 2 + 1)2 − 2X 2 = (X 2 + 1− aX )(X 2 + 1 + aX ). If −2 is a square
mod p, that is, p ≡ 1 or 3 (mod p), there exists b such that b2 = −2 (mod p), and we write
X 4 + 1 = (X 2 − 1)2 − (−2)X 2 = (X 2 − 1 − bX )(X 2 − 1 + bX ). If −1 is a square mod p,
that is, p ≡ ±1 (mod 4), then we have X 4 + 1 = X 4− (−1) = (X 2− c)(X 2 + c), for some c
such that c2 = −1 (mod p). This shows that the statement with “irreducible” replaced by
“reducible” is also false.

Exercise 14

Let p 6= 2 be a prime, and let b ∈ Z×p be a p-adic unit. If there exists α1 such that
α2
1 ≡ b (mod pZp), then b is the square of an element of Z×p .

Solution. Apply Hensel’s Lemma to X 2 − b. Clearly, as b ∈ Z×p and p 6= 2, we have
2α1 6≡ 0 (mod p).

Exercise 15

Show that the equation
(X 2 − 2)(X 2 − 17)(X 2 − 34) = 0

has a root in Qp for all p ≤ ∞, but it has no roots in Q.

Solution. Let f (X ) = (X 2 − 2)(X 2 − 17)(X 2 − 34). Certainly f has real roots (recall that
Q∞ = R) and no rational roots. For p 6= 2, 17, one applies again Hensel’s Lemma. If neither
2 nor 17 are squares modulo p, then their product is. (This can be easily seen either by

using Legendre symbols,
(
34
p

)
=
(
17
p

)(
2
p

)
= (−1)(−1) = 1, or by recalling that (Z/pZ)×

is cyclic, hence being a square means being an even power of the generator, so that the
product of two non-squares is the product of two odd powers of the generator.) In other
words, there is α such that f (α) ≡ 0 (mod p) and it is clear that f ′(α) = 2α 6≡ 0 (mod p),
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hence there is a solution x ≡ α (mod pZp) of f (X ) = 0.
For p = 2, note that 17 is a square in Q2. For example, this can be seen using Hensel’s
Lemma as formulated in Problem 10. For p = 17, note that 62 ≡ 2 (mod 17) and one can
use the normal Hensel Lemma.
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