## Homework 12

The homeworks are due on the Thursday of the week after the assignment was posted online ${ }^{1}$. Please hand in your homework at the beginning of the tutorial or bring it to the lecture on Thursday morning. You can work on and submit your homework in groups of two. Please staple your pages and write your names and matriculation numbers on the first page.

## Problem 34 (10 pts.)

Let $L \subset \mathbb{R}^{n}$ be a lattice of full rank (here we work with the standard inner product $\langle x, y\rangle=$ $\sum_{i=1}^{n} x_{i} y_{i}$ on $\mathbb{R}^{n}$.)
a) Show that there is a matrix $A \in \mathrm{GL}_{n}(\mathbb{R})$ such that $L=A \mathbb{Z}^{n}$.
b) Show that if $L=A \mathbb{Z}^{n}$, then the dual lattice $L^{\prime}$ of $L$ is given by $L^{\prime}=A^{*} \mathbb{Z}^{n}$, where $A^{*}=\left(A^{T}\right)^{-1}$.

Solution. a) Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be a basis of $L$, that is,

$$
L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n}
$$

and the $v_{i}$ are linearly independent. Write $v_{i}=\left(v_{1, i}, v_{2, i}, \ldots, v_{n, i}\right)^{T} \in \mathbb{R}^{n}$ and put

$$
A=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n \times n}
$$

that is, the vectors $v_{i}$ form the columns of $A$. Since the $v_{i}$ are linearly independent, we have $A \in \mathrm{GL}_{n}(\mathbb{R})$. Moreover, if

$$
x=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \in L
$$

with $a_{i} \in \mathbb{Z}$, then

$$
x=A \cdot a
$$

with $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T} \in \mathbb{Z}^{n}$. Certainly, we also have $A \mathbb{Z}^{n} \subset L$, so that we can conclude $A \mathbb{Z}^{n}=L$.
b) We have $\lambda \in L^{\prime}$ if and only if $\langle\lambda, y\rangle \in \mathbb{Z}$ for all $y \in L$ and this is equivalent to $\langle\lambda, A x\rangle \in \mathbb{Z}$ for all $x \in \mathbb{Z}^{n}$. Since $A^{T}$ is the dual of $A$ with respect to $\langle\cdot, \cdot\rangle$, we have

$$
\langle\lambda, A x\rangle=\left\langle A^{T} \lambda, x\right\rangle
$$

We certainly have $\left\langle A^{T} \lambda, x\right\rangle \in \mathbb{Z}^{n}$ for all $x \in \mathbb{Z}^{n}$ if and only if $A^{T} \lambda \in \mathbb{Z}^{n}$, because clearly this is sufficient and it is easily seen to be necessary by taking $x=e_{i}$ the $i$ th standard basis vector. We have $A^{T} \lambda \in \mathbb{Z}^{n}$ if and only if $\lambda \in\left(A^{T}\right)^{-1} \mathbb{Z}^{n}$, proving the claim.

[^0]
## Problem 35 ( 10 pts.)

In this problem we prove some properties of Dirichlet characters that were already mentioned or used in class.
a) Show that the set $G$ of Dirichlet characters $\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}$ modulo $m$ is a group with respect to multiplication.
b) Show that $|G|=\varphi(m)$.
c) Show that

$$
\sum_{n(\bmod m)} \chi(n)= \begin{cases}\varphi(m) & \text { if } \chi=\chi^{0} \\ 0 & \text { otherwise }\end{cases}
$$

where $\chi^{0}$ denotes the trivial character modulo $m$.
Hints: For $\chi \neq \chi^{0}$, there exists $k \in \mathbb{Z}$ with $\operatorname{gcd}(k, m)=1$, such that $\chi(k) \neq 1$. Then multiply the sum above by $\chi(k)$.

Solution. Parts a) and b) are easy to check and can be found in any number theory book, therefore we omit their full proofs here. As some hints for part b), it is easy to see that $\chi(1)=1$. Further, by the fundamental theorem of finite abelian groups, the group of units $(\mathbb{Z} / m \mathbb{Z})^{\times}$splits into a direct product of cyclic groups of the form $\mathbb{Z} / p_{i}^{h_{i}} \mathbb{Z}$, where $\prod h_{i}=\varphi(m)$ and $p_{i}$ are primes dividing $\varphi(m)$. It is then easy to see that any character $\chi$ is uniquely defined on the generators of these cyclic groups, and that there will be in total exactly $\prod h_{i}=\varphi(m)$ possibilites for $\chi$. c) If $\chi=\chi^{0}$, the claim is trivial. Otherwise, the claim follows again easily on noting that

$$
\sum_{n(\bmod m)} \chi(n)=\sum_{n(\bmod m)} \chi(k n)=\chi(k) \sum_{n(\bmod m)} \chi(n)
$$

since $(k, m)=1$. Alternatively, by the observation from part b ), the sum in question will equals the sum of all the $\varphi(m)$-th roots of unity, which is zero.

## Problem 36 (10 pts.)

Poisson summation formula for finite groups. Some definitions: Let $G$ be an arbitrary group. A complex-valued function $f$ defined on $G$ is called a character of $G$ if $f$ has the multiplicative property $f(a b)=f(a) f(b)$ for any $a, b \in G$ and if there exists some $c \in G$ with $f(c) \neq 0$. It is easy to see that if $f$ is a character on a finite group $G$ with identity $e$, then $f(e)=1$ and each $f(a)$ is a root of unity. A finite abelian group $G$ of order $n$ has exactly $n$ distinct characters. If multiplication of characters is defined by $\left(f_{i} f_{j}\right)(a)=f_{i}(a) f_{j}(a)$ for any $a \in G$, then the set of characters of $G$ forms an abelian group of order $n$, which is usually denoted by $\widehat{G}$. Note that, alternatively but equivalently, $\widehat{G}$ is then the dual group of $G$, i.e., the set of homomorphisms $G \rightarrow S^{1}$ with the group law given by pointwise multiplication of functions.
If $G$ is a finite abelian group, the Fourier transform of a function $f: G \rightarrow \mathbb{C}$ is the function $\widehat{f}: \widehat{G} \rightarrow \mathbb{C}$ given by

$$
\widehat{f}(\chi)=\sum_{g \in G} f(g) \bar{\chi}(g)
$$

One then has the Fourier inversion formula

$$
f(x)=\frac{1}{|G|} \sum_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi(x)
$$

which tells us how to recover $f$ from its Fourier transform.
Your tasks: You do not need to prove anything up to here! Rather, just familiarize yourself with these notions. What you do need to prove is the following version of Poisson summation, and illustrate it by an example.
a) Let $G$ be a finite abelian group and $H \subset G$ a subgroup. Show that for any function $f: G \rightarrow \mathbb{C}$ we have

$$
\frac{1}{|H|} \sum_{h \in H} f(h)=\frac{1}{|G|} \sum_{\chi \in H^{\perp}} \widehat{f}(\chi)
$$

where $H^{\perp}=\{\chi \in \widehat{G}: \chi=1$ on $H\}$.
Hints: You might want to use (and prove) the identities

$$
\sum_{g \in G} \chi(g)=\left\{\begin{array}{ll}
|G| & \text { if } \chi=1_{G}, \\
0 & \text { if } \chi \neq \mathbf{1}_{G},
\end{array} \quad \sum_{\chi \in \widehat{G}} \chi(g)= \begin{cases}|G| & \text { if } g=1 \\
0 & \text { if } g \neq 1\end{cases}\right.
$$

and the orthogonality relations

$$
\sum_{g \in G} \chi_{1}(g) \bar{\chi}_{2}(g)=\left\{\begin{array}{ll}
|G| & \text { if } \chi_{1}=\chi_{2}, \\
0 & \text { if } \chi_{1} \neq \chi_{2},
\end{array} \quad \sum_{\chi \in \widehat{G}} \chi_{1}(g) \bar{\chi}_{2}(g)= \begin{cases}|G| & \text { if } g_{1}=g_{2} \\
0 & \text { if } g_{1} \neq g_{2}\end{cases}\right.
$$

Try to prove that if $\delta_{g}: G \rightarrow\{0,1\}$ is given by $\delta_{g}(x)=1$ if $x=g$, and $\delta_{g}(x)=0$ otherwise, then

$$
\delta_{g}(x)=\frac{1}{|G|} \sum_{\chi \in \widehat{G}} \bar{\chi}(g) \chi(x)
$$

To prove the Poisson summation formula for $f$, it is then enough to verify it for $\delta_{g}$.
b) Let $G=\mathbb{Z} / 8 \mathbb{Z}$ and $f: G \rightarrow \mathbb{C}$ be given by $f(0)=f(4)=5, f(1)=f(5)=3$ and $f(2)=f(3)=f(6)=f(7)=1$. Compute the values $\widehat{f}(n)$.

Solution. a) Clearly every function $f: G \rightarrow \mathbb{C}$ can be written as a linear combination of delta-functions,

$$
f=\sum_{g \in G} f(g) \delta_{g}
$$

therefore it is enough to verify the Poisson summation for $\delta_{g}$. We distinguish two cases: If $g \in H$, then one needs to show that

$$
\frac{1}{|H|}=\frac{1}{|G|} \sum_{\chi \in H^{\perp}} \widehat{\delta}_{g}(\chi)=\sum_{\chi \in H^{\perp}} \bar{\chi}(g)
$$

which follows on checking the easy facts that $H^{\perp} \cong \widehat{(G / H)}, \widehat{G} / H^{\perp} \cong \widehat{H}$ and, in particular, that $\left|H^{\perp}\right|=[G: H]$. If $g \notin H$, then we need to show that

$$
\sum_{\chi \in H^{\perp}} \widehat{\delta}_{g}(\chi)=\sum_{\chi \in H^{\perp}} \bar{\chi}(g)=0
$$

But since certainly $g \neq 1$, then we know that $\sum_{\chi \in \widehat{G}} \chi(g)=0$. Pick any $h \in H, h \neq 1$. Then $g^{-1} h \neq 1$, and $\sum_{\chi \notin H^{\perp}} \chi(g) \chi\left(g^{-1} h\right)=\sum_{\chi \notin H^{\perp}} \chi(h)=0$, hence also $\sum_{\chi \notin H^{\perp}} \chi(g)=0$, from where the conclusion follows.
b) By writing a cyclic group in the form $\mathbb{Z} / m \mathbb{Z}$, one can write an isomorphism with the character (dual) group explicitly:
Every (Dirichlet) character has the form $\chi_{k}: j \mapsto e^{2 \pi i j k / m}$ for a unique $k \in \mathbb{Z} / m \mathbb{Z}$. The Fourier transform of a function $f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{C}$ can then be regarded as a function not on $(\widehat{\mathbb{Z} / m \mathbb{Z}})$, but on $\mathbb{Z} / m \mathbb{Z}$ :

$$
\widehat{f}(k):=\sum_{j \in \mathbb{Z} / m \mathbb{Z}} f(j) \bar{\chi}_{k}(j)=\sum_{j \in \mathbb{Z} / m \mathbb{Z}} f(j) e^{-2 \pi i j k / m} .
$$

On the values $0,1, \ldots, 7$, the Fourier transform $\widehat{f}$ takes then, in order, the values: $20,0,8+$ $4 i, 0,4,0,8-4 i, 0$.


[^0]:    ${ }^{1}$ This assignment is due Thursday, 16.01.20.

