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Black—=Scholes—Merton World

relevant variables and notations:

t current time, 0 <t < T
T expiration time, maturity
r > 0 |risk-free interest rate
S, S¢ |spot price, current price per share of stock/asset/underlying
o annual volatility
K strike, exercise price per share
V(S,t) | value of an option at time ¢ and underlying price S
Ve | value of a call option
Vp | value of a put option

r and o are assumed constant.

Black—Scholes equation for a European-style standard options

av

Black—Scholes formula

The Black—Scholes equation has a closed-form solution, the Black—Scholes formula. This
formula is written in terms of the time to maturity 7,

T:=T—1,

di(S, 7 K, 7, 0) 1= {10g < 0;) T}
dy(S, 71 K, 7, 0) 1= { (T _ 0;) }

vew (s, K, r, 0) dl) + Ke "TF(—ds)
Ve (S, 7 Kyryo) = SF(dl) — Ke "TF(ds)

which leads to

<

m\ -

(dividend-free case). F' denotes the cumulated standard normal distribution function.
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Distribution Function of the Standard Normal Distribution

Define

2T 11 0.23164197
and the coeflficients

a; = 0.319381530 as = —1.821255978
as = —0.356563782 as = 1.330274429
a3 = 1.781477937.

Then
F(z) =1~ f(z) (@12 + a22” + a32® + as2* + a52°) +(z)

for 0 < x < oo with an absolute error € bounded by
le(z)| < 7.5% 1078
(see [Abramowitz, Stegun, 1968]). Hence we have the approximating formula
F(z)~1— f(z)z((((asz + a4)z + a3)z + a2)z + a1) ,

which requires 17 arithmetic operations and the evaluation of the exponential function to
obtain an accuracy of about 7 decimals. For z < 0 apply F(z) =1 — F(—z).
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Binomial Method

B:= l(e—rAt + e(r+02)At)

2
w=p+ /B 1
d=1/u=p8-+/p%2-1
erAt_d

p= u—d

Call: V(S(tar), tar) = max {S(tar) — K, 0}, hence:

Vin = (Sjur — K)*
Put: V(S(tm),tm) = max {K — S(ta), 0}, hence:

Vin = (K — Sjm) ™

European option:
Vi = e "2 (pVigrim + (L= p)Viita) -

American Call:
Vii = max {(S;; — K)F, e ™" (pVjqr,i41 + (1= p)Vjir1) }
American Put:

Vi =max {(K — S;;)", e ™" (0Vjyriv1 + (1 = p)Vjis1)}

Algorithm: binomial method

(1.11)

(1.12C)

(1.12P)

(1.13)

(1.14C)

(1.14P)

Input: v, 0, S =Sy, T, K, choice of put or call,

European or American, M

calculate: At :=T/M, u, d, p from (1.11)
Soo := So
Sim = Soould™ I, j=0,1,.... M
(for American options, also S;; = Spou’/d*~7
for0<i< M, j=0,1,...17)
Vim from (1.12)

Vjifori<M{

Output: Vg is the approximation VO(M) to V(Sp,0)

from (1.13) for European options

from (1.14) for American options
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Stochastic Processes

Algorithm: simulation of a Wiener process

Start: to =0, Wy =0; At
loop j=1,2,...:
tj=tj_ 1+ At
draw Z ~ N(0,1)
W, =W;_1+ ZVAt

Definition: It6 stochastic differential equation
An It6 stochastic differential equation is

dXt = a(Xt, t)dt + b(Xt, t)th, (131&)
this together with X, = X is a symbolic short form of the integral equation
t t
X, = X, + / a(X,, 5)ds + / b(Xs, 5)dW,. (1.31b)
to to

Algorithm: Euler discretization of an SDE
Approximations y; to X;, are calculated by

Start:  to, yo = Xo, At, Wy = 0.
loop 7=0,1,2,...
tit1=t; + At
AW = ZVAt with Z ~ N(0,1)
Yj+1 = yj + a(y;, t;) At + b(y;, t;) AW

Model: geometric Brownian motion, GBM

dSt = ,U,St dt + O'St th (133, GBM)

It0 Lemma

Suppose X; follows an Ité process (1.31), dX; = a(Xy, t)dt + b(Xy, t)dWy, and let g(z,t)
2

be a C%'-smooth function (continuous %, %, %). Then Y; := g(X3,t) follows an Ito

process with the same Wiener process W;:

(089 | 0g  10%, dg
dY; = (8xa+ o+ 5" ) dt+ Sob AW (1.43)

where the derivatives of g as well as the coefficient functions a and b in general depend on
the arguments (X, ).
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Random Numbers

Algorithm: linear congruential generator

Choose Njy.
For ¢+ = 1,2, ... calculate (2.1)
N; = (aNj—1 +b) mod M

U; := N;/M should be uniformly distributed, U ~ U[0,1]. An alternative:

Algorithm: Fibonacci generator

Repeat: ¢ :=U; —U;
if (<0, set (:=(+1

Ui :=¢
1:=1—1
ji=j—1

if 1 =0, set ¢:=17
if j =0, set j:=17

Initialization: Set ¢ = 17, j = 5, and calculate Uy, ..., U7 with a congruential generator,
for instance with M = 714025, a = 1366, b = 150889. Set the seed Ny = your favorite
dream number, possibly inspired by the system clock of your computer.

Algorithm: Box-Muller (creates Z ~ N(0,1))

(1) generate Uy ~ U[0,1] and Uy ~ U[0, 1].
(2) 6:=2nU,, p:=+/—2logl;
(3) Z1 := pcosf is a normal variate

(as well as Zs := psinf).
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Algorithm: polar method (creates Z ~ N(0,1))

(1) Repeat: generate Uy, Us ~ U[0,1]; Vi :=2U; — 1,
Vo i=2Us— 1, until W:=V2+VZ <1.

(2) Z1 == Viy/—2log(W)/W
Zy = Vo/—2log(W)/W
are both standard normal variates.

Algorithm: correlated random variable with expectation p and covariance X

(1) Calculate the Cholesky decomposition AA =X
(2) Calculate Z ~ N(0,I) componentwise
by Z; ~N(0,1), i =1, ..., n, for instance,
with Marsaglia’s polar algorithm
(3) u+ AZ has the desired distribution ~ N (u, )
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Monte Carlo Simulation

Algorithm: Milstein integration of SDEs

Start:  to =0, yo = Xo, Wo =0, At =T/m
loop 5=0,1,2,...m—1:
tjv1 = t; + At
Calculate the values a(y;), b(y;), b'(y;)
AW = ZVAt  with Z ~ N(0,1)

1
Yi+1 = Yj + aAt + AW + 5bb' -((AW)? — At)

Algorithm: Monte Carlo simulation of European options

(1) For k =1,...,N: Choose a seed and integrate
the SDE of the underlying model, here
dS =rSdt+oSdW
for 0 <t < T} let the final result be (St)k.
(2) By evaluating the payoff function
one obtains the values
(V(St, 1) =V ((S7)k,T), k=1,...,N.
(3) An estimate of the risk-neutral expectation is
. 1 Y
E(V(Sr. 1) = kZ::l(V(ST,T))k.
(4) The discounted variable
V:=e"TE(V(Sr, T))

is a random variable with E(V) = V/(Sp, 0).
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PDE methods

With a continuous dividend flow 6 and SDE dS = (p—6)Sdt+0SdW the corresponding
Black-Scholes equation for V(S,t) is

oV 0% 0%V oV
o _ s _wv—o. 4.1
o TS e T (r—0)S5e —rV =0 (4.1)

This equation is equivalent to the PDE equation

oy _ 0%

or ~ 022 (42)

for y(z, ) with 0 < 7, € IR. This equivalence can be proved by means of the transfor-
mations

27 2r 2(r—o
S=Ke*, t1=T-—, q=—, ¢:= ( 5 ),
o o o
V(S,t) =V (Ke*,T — 23) =: v(z,7) and (4.3)

v(z,7) =: K exp {—%(q(; -1z — (i(% —1)%+ q) 7'} y(z, 7).

The payoff is

call: y(z,0) = max {e%(qﬁl) —e3(®—1) 0} (4.4C)

put: y(z,0) = max {e%(q‘s_l) — 3Bt 0} (4.4P)
auxiliary function:

put: g(x,7):= exp{%((% — 1) +4q9)7} maX{e%(q“_l)”” — e%(qﬁl)x, 0}
call (6>0): g(z,7):=exp{i((gs —1)>+4q)7} max{e%(q“ﬂ)m —ez(@—Dz, 0}

finite-fifference discretization
notations for the grid are

T, :=v-At for v =0,1, ..., Vmax

zi:=a+itAz fori =0,1,....m

Yiv = Y(T4, ),

w;, approximation to y;,.

For each time level v, the w;, are collected into a vector

w(”) = (’wly, ceey ’wm_lﬂj)ir
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Crank—Nicolson framework
choice of method: # = 3 for Crank—Nicolson (alternative: § = 1 for backward-difference
method)

biv = Wiy + A(1 = 0) (Wit1,p — 2wip +Wi—1,) , 1=2,...,m —2
b1y = w1, + A(1 — 0)(way — 2w1y + gou) + M0G0, v41

bm—1,0 = Wm-1 + A1 = 0)(gmv — 2Wm—1,0 + Wm—2) + A0Gm v+1
b = (bry, ooy bry_1,)"

w® = (Wipy ooy Win—1,)"

9" = (910, s Gm—1.0)"

and
1+2)X8 —-)\0 0

— )0
A= e R(m—1)x(m=1) (4.30)

Algorithm: computation of American options

Forv=0,1,...;Vmax — 1:

Calculate the vectors g := g *1),
b:=b® and b:= b

Calculate the vector w as solution of the problem
Aw—-b>0, w>g, (Aw—-b"(w—g)=0. (4.32)

w ) =y

solution of (4.32)

Solve Aw = b such that the side condition

w > g is obeyed componentwise.

can be performed by a suitable elimination, using a backward/forward approach in case of
a put, and a forward/backward approach in case of a call.
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Analytic Methods for American Puts

an approximation at S,¢ for S > S¢ with 7 =T —t is given by

Algorithm:

Vi=aVE" (S, 7 Ke™) + (1 — a)VE™ (S, K) .

_ rT A _ In(S/8¢)
i ) B o

ap =3.9649 , a3 =0.032325.

— 2r 7
S =K
f <J2+2r) ’

0'27'

b00'27'+b1 ’
bo = 1.04083 , b3 =0.00963 .

7=

interpolation method

For given S, 7, K, 7,0 evaluate v, Sg, 3 with S¢, and o .
Evaluate the Black-Scholes formula for Vg™

for the arguments in (4.41).

Then V from (4.41) is an approximation to V™ for S > S; .

Algorithm:

quadratic approximation

(4.41)

(4.42)

(4.43)

(4.44)

For given S, 7, K, r, o evaluate g = H=1-¢"

o2’
1 4q
T _ —1)2
and A := 2{(q 1)+4/(g—1) +H}.

Solve

SeF(dy(Se))[1 - %] 4 Ke ™ [1— F(dy(S)] = K =0

iteratively for S¢. (This involves a sub-algorithm,

from which F'(d;(St)) should be saved.)

Evaluate V" (S, 7) using the Black-Scholes formula. Then
A4 eur 1 S A
V= V" (S, 1) — =St F(d1(Sr)) | =

A St
is the approximation for S > S¢,

and V=K —SforS<S5¢.
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