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Abstract Computation is based on models and applies algorithms. Both a model

and an algorithm can be sources of risks, which will be discussed in this paper. The

risk from the algorithm stems from erroneous results, the topic of the first part of

this paper. We attempt to give a definition of computational risk, and propose how

to avoid it. Concerning the underlying model, our concern will not be the “model

error”. Rather, even the reality (or a perfect model) can be subjected to structural

changes: Nonlinear relations of underlying laws can trigger sudden or unexpected

changes in the dynamical behavior. These phenomena must be analyzed, as far they

are revealed by a model. A computational approach to such a structural risk will be

discussed in the second part. The paper presents some guidelines on how to limit

computational risk and assess structural risk.
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1 Computational Risk

Early computer codes concentrated on the evaluation of special functions. The em-

phasis was to deliver full accuracy (say, seven correct decimal digits on a 32-bit ma-

chine) in minimal time. Many of these algorithms are based on formulas of [1, 6].

Later the interest shifted to more complex algorithms such as solving differential

equations, where discretizations are required. Typically, the errors are of the type

C∆ p, where ∆ represents a discretization parameter, p denotes the convergence or-

der of the method, and C is a hardly assessable error coefficient. A control of the
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error is highly complicated, costly, and frequently somewhat vague, and is source

of computational risk.

This first part of the paper discusses how to assess the risk from erroneous results

of algorithms. Accuracy properties of algorithms will have to be reconsidered.

1.1 Efficiency of Algorithms

The performance of algorithms can be well compared in a diagram depicting the

costs (computing time) over the achieved relative error. In case the output of an

algorithm consists of more than one real number, then we think of the largest of all

these errors. Now, for a certain computational task, select and run a set of algorithms,

and enter the points representing their performance into the diagram. Schematically,

the dots look as in Fig. 1.1
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Fig. 1 Costs (computing time) of algorithms over relative error

For nontrivial computational tasks there will be hardly a method that is simulta-

neously both highly accurate and extremely fast; there is always a trade-off. Hence,

one will not find algorithms in the lower left corner, below the curve in Fig. 1. This

(smoothed) curve is the efficient frontier. It can be defined in the Pareto sense as min-

imizing computing time and maximizing accuracy. Clearly, the aim of researchers

is to push the frontier down; the curve is not immutable in time. The smoothed fron-

tier in Fig. 1 may serve as idealized vehicle to define efficiency: Each method on the

frontier is efficient.

1 An example of such a diagram for the task of pricing American-style options is, for example,

Figure 4.19 in [14], however, for the root mean square error of a set of 60 problems.
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This notion of efficiency allows to define the “best” algorithm for a certain task

almost uniquely. A reasonable computational accuracy must be put into relation to

the underlying model error. So, indicate the size of the model error on the horizontal

axis, and let a vertical line at that position cut the efficient frontier, which completes

the choice of the proper algorithm. Of course, the efficient frontier is a snapshot that

compares an artificial selection of algorithms.

Notice that this error in the final result does not explicitly consider intermediate

errors or inconsistencies in the algorithm. For example, errors from solving linear

equations, instability caused by propagation of rounding errors, or discretization

errors do not enter explicitly. The final lumped error is seen with the eyes of the

user.

1.2 Risk of an Algorithm

Computational methods involve parameters on which the accuracy depends. Dis-

cretizations are characterized by their fineness2 M. For example, a binomial method

for option pricing may work with M = 100 or M = 50 time intervals. Let us call the

first algorithm B-100, and the second B-50. Here “algorithm” is understood as an

implementation where all accuracy parameters (as M) are fixed; B-100 is an algo-

rithm different from B-50.

Now we are prepared to define the computational risk for a given model:

Computational Risk:

The chosen algorithm does not deliver the required accuracy.

For example, when an algorithm provides results with an error of 0.002 where we

required 0.001 (three decimal digits), this would be strictly seen as failure. Nowa-

days in practice, it is widespread not to notice or to ignore such a failure. As a

“safety measure” one frequently chooses unnecessarily high values of the fineness

M. This makes a failure less likely, but leads to overshooting and a lack of efficiency.

As outlined above, we aim at choosing the optimal algorithm such that it correctly

matches the required accuracy.

1.3 Eliminate the Risk

Occasionally it was suggested to establish algorithms that deliver results with guar-

anteed accuracy [9]. Related algorithms create accuracy informtion during the pro-

duction run; they are highly involved, expensive and hence used rarely. Although

the idea of guaranteed accuracy is not really new, it seems appropriate to be pushed

forward for applications in finance. For example, algorithms for option pricing have

2 Number of subintervals into which an underlying interval is subdivided by a discretization
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reached a level of sophistication which may allow to pursue as second step the es-

tablishing of a priori accuracy information, before the calculation is started.

In this paper we propose to unburden algorithms from relevant accuracy and error

control. Rather the algorithms should be made as fast as possible, without iterating

to convergence. As mentioned above, for each algorithm the mesh fineness M will be

fixed. Then the algorithm has fixed costs, and can be regarded as “analytic method”.

The implementation matters. External fine tuning is not available, and the computer

programs can be regarded as hard-wired.

Then these “ultimate” versions of algorithms are investigated for their accuracy.

We suggest to gather accuracy or error information into a file separate from the

algorithm. This “file” can be a look-up table, or a set of inequalities for parameters.

Typically, the accuracy results will be determined empirically. As an illustration,

the accuracy information for a certain task (say, pricing an American-style vanilla

put option) and a specific set of parameters (strike, volatility σ , interest rate r, time

to maturity T ) might look as in Table 1. As application, one chooses the algorithm

according to the information file.

Table 1 Fictive entry in an accuracy file

correct digits algorithm

2 A

3 B-50

4 B-100

5 C

1.4 Effort

Certainly, the above suggestion amounts to a big endeavor. In general, original pa-

pers do not contain the required accuracy information. Instead, usually, convergence

behavior, stability, and intermediate errors are analyzed. Accuracy is mostly tested

on a small selection of numerical examples. It will be a challenge to researchers, to

provide a priori accuracy information for “any” set of parameters. The best way to

organize this is left open. Strong results will establish inequalities for the parame-

ters that guarantee certain accuracy. Weaker results will establish multidimensional

tables of discrete values of the parameters, and the application will interpolate the

accuracy.

To encourage the work, let us repeat the advantages: Accuracy information and

conditions under which algorithms fail will be included in external files. The algo-

rithms will be slimmed down, the production runs will be faster, and the costs on a

particular computer are fixed and known in advance. The computational risk will be

eliminated.
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1.5 Example

As an example, consider the pricing of a vanilla American put at the money, with

one year to maturity. We choose an algorithm that implements the analytic inter-

polation method by Johnson [7].3 For the specific option problem, the remaining

parameters are r and σ . Figure 2 shows the relative error in the calculated price of

the option depending on r and σ , and implicitly a map of accuracies. For the under-

lying rectangle of realistic r,σ -values, and the assumed type of option, a result can

be summarized as follows:

In case σ > 3r holds, the absolute of the relative accuracy

is smaller than 0.005 (two and and a half digits).

Of course, the accuracy result can be easily refined.
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Fig. 2 Relative error. level curves: −0.004, −0.002, 0., +0.002

2 Assessing Structural Risk

We now turn to the second topic of the paper, on how to assess structural changes

in a model computationally. This is based on dynamical systems, in which the dy-

namical behavior depends on a certain model parameter. Critical threshold values

3 For analytic methods, strong results may be easier to obtain because implementation issues are

less relevant. For Johnson’s method, no fineness M is specified.
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of this parameter will be decisive. At a threshold parameter value, often the regime

(the current attractor) switches, and the quality changes. Below we shall understand

“structural risk” as given by the distance to the next threshold value of the critical

parameter. An early paper stressing the role threshold values (bifurcations) can play

for a risk analysis is [11]. The approach has been applied successfully in electrical

engineering for assessing voltage collapse, see [3].

We begin with recalling some basic facts from dynamical systems.

2.1 Simplest Attractor

The basic mean reversion equation is well-known in finance: This is a stochastic

differential equation (SDE) for a stochastic process σt

dσt = α(ζ −σt)dt + γσδ
t dWt

with constant α,ζ ,γ,δ > 0, and Wt denotes a Wiener process. This SDE is of the

type

dσt = f (σt )dt + driving force .

The response of σt is attracted by the value of ζ , which becomes apparent by a

simple stability analysis of the SDE’s deterministic kernel, the ordinary differential

equation (ODE) ẋ = f (x) = α(ζ − x). The state x = ζ is the simplest example of

an attractor.4

For more flexibility, a constant (and unknown) value of ζ can be replaced by a

suitable process ζt , which in turn is driven by some model equation. This adds a

second equation. A simple example of such a system is the tandem equation

dσt = α1(ζt −σt)dt + γσt dWt

dζt = α2(σt − ζt)dt

An ODE-stability analysis of its deterministic kernel does not reveal an attractor.

Rather the equilibrium is degenerate, the Jacobian matrix is singular. Simulating

the tandem system shows two trajectories dancing about each other, but drifting

across the phase space erratically. What is needed is some anchoring, which can be

provided by an additional nonlinear term.

2.2 Mean-Field Models

We digress for a moment to emphasize that the above tandem is a mean-field model.

In canonical variables x1,x2 it is of the type

4 The equilibrium x = ζ is stable since d f /dx =−α < 0; for t → ∞, x approaches ζ .
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dx1 = α∗
1

[

1
2
(x1 + x2)− x1

]

dt + γ1x1 dW
(1)

t

dx2 = α∗
2

[

1
2
(x1 + x2)− x2

]

dt + γ2x2 dW
(2)

t

which generalizes to x1, . . . ,xn. The reversion is to the mean

x̄ :=
1

n

n

∑
i

xi ,

and a key element for modeling interaction among agents [4, 5]. More general mean

field models include an additional nonlinear term, and are of the type

ẋ = β ∗ f (x)+α ∗ interaction + γ ∗ ext.forces.

Notice that the dimension n is a parameter, and the solution structure thus depends

on the number of variables. The parameters α measure the size of cooperation, and

γ the strength of external random forces. The nonlinearity f (x) and the balance of

the parameters β ,α,γ,n control the dynamics.
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Fig. 3 Artificial example of Section 2.3: x1 and x2 over time t , for s = 2, starting at 0.1
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2.3 Artificial Example

As noted above, a suitable nonlinear term can induce a dynamic control that prevents

the trajectories from drifting around erratically. Here we choose a cubic nonlinearity

of the Duffing type f (x) = x− x3, since it represents a classical bistability [13]. For

slightly more flexibility, we shift the location of equilibria by a constant s; otherwise,

we choose constants artificially. For the purpose of demonstration, our artificial ex-

ample is the system

dx1 = 0.1(x1 − s)
{

1− (x1 − s)2
}

dt + 0.5 [x2 − x1]dt + 0.1x1dWt

dx2 = 0.5 [x1 − x2]dt

Clearly, there are three ODE equilibria, namely, two stable nodes at x1 = x2 = s±1,

and a saddle at x1 = x2 = s. For graphical illustrations of the response see Figs. 3

and 4.

Figure 3 depicts the quick attraction of the trajectories (starting at 0.1) towards

the smaller node at s− 1 = 1. This dynamical response is shown again in Fig. 4 in

the x1,x2-phase portrait. As a background, this figure shows 11 trajectories of the

deterministic kernel, where the random perturbation is switched off. Starting from

11 initial points in the plane, the trajectories approach one of the two stable nodes.

This part of the plane consists of two basins of attraction, separated by a separatrix

that includes the saddle. The phase portrait of the deterministic kernel serves as

skeleton of the dynamics possible for the randomly perturbed system.

Now imagine to increase the strength of the random force (enlarge γ). For suf-

ficiently large γ , the trajectories may jump across the wall of the separatrix. Then

the dynamics is attracted by the other node. Obviously, these transitions between

the two regimes may happen repeatedly. In this way, one of the stylized facts can

be modeled, namely, the volatility clustering5 [2]. This experiment underlines the

modeling power of such nonlinear systems.

2.4 Structure in Phase Spaces

The above gentle reminder on dynamical systems has exhibited the three items node,

saddle, and separatrix. There are many more “beasts” in the phase space. The fol-

lowing is an incomplete list:

• stationary state,

• periodic behavior,

• chaotic behavior,

• jumps, discontinuities,

• loss or gain of stability.

5 Phases with high and low volatility are separated from each other.
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These qualitative labels stand for the structure of dynamical responses. The struc-

ture may change when a parameter is varied. Although a “parameter” is a constant,

it may undergo slow variations, or may be manipulated by some external (political)

force. Such changes in the “constant” parameter are called quasi-stationary. Typ-

ically, our parameter is in the role of a control parameter. Some variations in the

parameter may have little consequences on the response of the system. But there are

critical threshold values of the parameter, where the changes in the structure can

have dramatic consequences. At these thresholds, small changes in the parameter

can trigger essential changes in the state of the system. The mathematical mecha-

nism that explains such qualitative changes is bifurcation.6

When a system drifts towards a bifurcation,

then this must be considered as risk!

Bifurcation is at the heart of systemic risk. Hence there is a need for a tool that

signals bifurcations in advance.
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Fig. 4 x1,x2-phase plane, with the trajectory of Figure 3, and 11 trajectories of the unforced system

6 For an introduction into bifurcation and related numerical methods, see [13].
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2.5 Risk Index

Let λ denote a bifurcation parameter of a dynamical system. For an underlying

model, we denote by λ0 a numerically calculated critical threshold value of λ . At

this point, the model error enters, because λ0 is based on the model. The distance to

λ0 is a measure of structural risk. This is the distance between the current operation

point (λ ) and the closest bifurcation. To signal the distance, the risk index

R(λ ) :=
λ

|λ −λ0|− ε

was suggested [12]. (ε is a small number representing several sources of error.)

The larger the value of R, the closer the risk is. The index gives risk a quantitative

meaning, invariant of the scaling of the model.7 A feasible range of the parameter

λ has been defined by

Fc := {λ | R(λ )< c} ,

and its complement is the risk area of level c.

2.6 Example

Sometimes, stock prices behave cyclically, and one may ask whether there is an

underlying deterministic kernel with periodic structure. In this context, behavioral

trading models are of interest. Lux [8] in his model splits traders into chartists and

fundamentalists, and models their impact on the price of an asset. The variables are

• p(t) market price of an asset, with fundamental value p∗;

• z proportion of chartists, and

• x(t) their sentiment index, between −1 for pessimistic and +1 for optimistic.

The growth ṗ will be depending on zx (impact of chartists) and on (1− z)(p∗− p)
(impact of fundamentalists). Combining these two impacts leads to the first of the

two equations in the system

ṗ = β (zxξc +(1− z)(p∗− p)ξf)

ẋ = 2zν1(tanh(U+−)− x)cosh(U+−)+ (1− z)(1− x2)ν2(sinh(U+f)− sinh(U−f))

The second equation models the sentiment x, with incentive functions U+−, U+f,

U−f

U+− : = α1x+α2
ṗ

ν1

7 Essentially, this is a deterministic approach. One may think of incorporating a volatility into R.
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U+f : = α3

(

1

p

(

rp∗+
ṗ

ν2

)

− r− s

∣

∣

∣

∣

p∗− p

p

∣

∣

∣

∣

∗

)

U−f : = α3

(

r−
1

p

(

rp∗+
ṗ

ν2

)

− s

∣

∣

∣

∣

p∗− p

p

∣

∣

∣

∣

∗

)

| |∗ is a smoothed version of | |, and the chosen constants are:

β = 0.5, ξc = 5, ξf = 5, ν1 = 0.5, ν2 = 0.75,
α1 = 1.02, α2 = 0.25, α3 = 1.5, r = 0.1, s = 0.8, p∗ = 10.

This is an ODE system. The original model [8] includes a third equation for the

proportion z. Our modified model is simpler in that it takes z as external parameter

(our λ ). The concern will be the structure of the response of the system as it varies

with z.

For the chosen constants we calculate λ0 = 0.6914 as critical threshold value of

the parameter z [10]. This is a Hopf bifurcation, at which periodic cycles are born

out of a stationary state. Accordingly, we have the two regimes

• z < λ0: (p,x) = (p∗,0) stable stationary, and

• z > λ0: stable periodic motion (cyclic behavior of the asset price).

At the Hopf point, there is a transition between the regimes. The risk index R sig-

nals the critical threshold by large values (Figure 5). For the chosen constants, the

threshold occurs at a proportion of chartists of about 70% of the traders.
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Fig. 5 Risk index R over parameter z. Left wing: index along the stationary states. Right wing:

index along the periodic states
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2.7 Summary

We summarize the second part of the paper. Provided a good model exists,8 we

suggest to begin with calculating the bifurcations / threshold values of parameters.

They are the pivoting points of possible trend switching. The distance between the

current operation point of the real financial system and the bifurcation point must

be observed. Large values of the risk index can be used as indicator, signaling how

close the risk is. This can be used as a tool for a stress test.

Acknowledgements The paper has benefited from discussions with Roland C. Seydel.
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