(map,Module,Module,ZZ)

map(M,N,k) -- construct a map from a module N to M which is provided by the integer k.

If k is 0, then the zero map is constructed. If k is 1, then M and N should have the same number and degrees of generators in the sense that the modules cover M and cover N are equal, and then the map which sends the i-th generator of N to the i-th generator of M is constructed (and it may not be well-defined). Otherwise, M and N should be equal, or at least have the same number of generators.

i1 : R = QQ[x,y];
i2 : M = image vars R

o2 = image {0} | x y |

                               1
o2 : R - module, submodule of R
i3 : N = coker presentation M

o3 = cokernel {1} | -y |
              {1} | x  |

                              2
o3 : R - module, quotient of R
i4 : f = map(M,N,1)

o4 = {1} | 1 0 |
     {1} | 0 1 |

o4 : Matrix
i5 : isWellDefined f

o5 = true
i6 : isIsomorphism f

o6 = true
i7 : g = map(M,cover M,1)

o7 = {1} | 1 0 |
     {1} | 0 1 |

o7 : Matrix
i8 : isWellDefined g

o8 = true
i9 : isIsomorphism g

o9 = false
i10 : h = map(cover M,M,1)

o10 = {1} | 1 0 |
      {1} | 0 1 |

o10 : Matrix
i11 : isWellDefined h

o11 = false

See also map(Module,Module,RingElement), map, and matrix.


topindexpreviousupnext